AG Rohlfing
StudIP · Webmail · RZ ·
AG Rohlfing
Home Publikationen Lehre / Teaching Forschung / Research Arbeitsgruppe / Group Kontakt / Contact

Elektronische Struktur kondensierter Materie: Forschungsschwerpunkte

Electronic Structure of Condensed Matter: Research Topics

Prof. Rohlfing has moved


>Universität Münster, Institut für Festkörpertheorie

(Wilhelm-Klemm-Str. 10, 48149 Münster, Room 708; E-Mail:; phone: +49 251 83-36340)

Allgemeiner Überblick
Im Mittelpunkt unserer Arbeiten stehen angeregte elektronische Zustände in kondensierter Materie.
Diese Zustände und ihre Spektren spielen eine zentrale Rolle beim Verständnis optischer Eigenschaften, bei der strukturellen Charakterisierung von Materialien, und vielem mehr. Besonders interessieren uns Systeme, die durch quantenmechanische Zustände auf der Längenskala der atomaren Bindung gekennzeichnet sind. Die Eigenschaften derartiger nanoskopisch geprägter Materialien gehen qualitativ weit über den ausgedehnten Festkörper hinaus und lassen sich nicht durch dessen Kenngrößen beschreiben. Sie erfordern vielmehr eine mikroskopische Theorie, die als kleinste Einheit am einzelnen Atom und seinen Orbitalen ansetzt und als ab-initio Theorie, also ohne Vorgabe von Parametern, formuliert wird. Darüber hinaus werden elektronische Zustände und ihre Spektren erheblich von Vielteilchen-Effekten beeinflusst (insbesondere von elektronischer Korrelation), deren sorgfäaltige Behdnalung mittels Vielteilchen-Störungstheorie einen Hauptaspekt dieses Forschungsgebiets darstellt.
Ein essentieller Bestandteil unserer Methoden ist die Symbiose grundlegender physikalischer Konzepte mit numerischen Verfahren, also die Umsetzung der Elektronenstruktur-Theorie in effiziente Computer-Algorithmen. Mittels solcher Software untersuchen wir interessante Aspekte verschiedenster Materialklassen. Die Verfahren lassen sich daher in den Grenzbereich zwischen Vielteilchenphysik, numerischer Computerphysik, und Materialwissenschaft einordnen.
General overview
The focus of our work is on excited electronic states in condensed matter.
Such states and their spectra play a key role in understanding optical properties, in characterizing materials, for optoelectronic mechanisms, and more. Of particular interest are systems that are characterized by quantum-mechanical stateson the length scale of the atomic bond. The properties of such nanostructured materials go far beyond those of the extended solid. They require a microscopic theory which takes the single atom and its orbitals as the smallest unit, and which is formulated as an ab-initio theory, without adjustable parameters. In addition, electronic states and their spectra are significantly affected by many-body effects (in particular, electronic correlation effects) whose careful treatment by many-body perturbation theory constitutes one of the main aspects of this field.
An important part of our work is given by the symbiosis between fundamental physical concepts and numerical methods, i.e. by the realization of electronic-structure theory in efficient computer algorithms. Employing this software we investigate interesting topics of various material classes. The approach can thus be classified as belonging to the boundary between fundamental many-body physics, computational physics, and materials science.

Key issues:

Theoretical concept:
The spectral properties of a many-electron system are determined by transitionsbetween its ground state and the excited states. For the problems we have in mind two classes of excited states are relevant: states with an electron number changing by plus/minus 1 (i.e., hole-like and electron-like excitations, whose energies define the band structure), as well as excited states without changing thenumber of electrons (in particular, electron-hole pairs that are relevant for optical excitations). Correspondingly, the mathematical description and its numerical realization of these concepts on powerful computer platforms is carried outin several consecutive steps.
  1. Determination of the ground state by density-functional theory (DFT).
    This step is necessary for ground-state geometry optimiztation and to provide the basis for the following considerations.
  2. Determination of the single-particle spectrum by many-body perturbation theory (MBPT).
    By solving the equation of motion of the single-particle Green function, the band structure of electrons and holes is obtained. As the crucial quantity, the electron self energy must be evaluated, describing the exchange and correlation effects among the electrons. This is done within the so-called GW approximation. The key aspect of this approximation is the inclusion of dielectric creening effects, that dominate the Coulomb interaction between charged particles in condensed matter. This concept has first been suggested in the years of 1965-1970; since about 1985 it has become possible to employ it for real systems,as well, including numerically demanding systems like complex surfaces and large molecules.
  3. Investigation of optical excitations within MBPT.
    Optical transitions can only be described if electron-hole correlation isincluded in the excitation process. This leads to the problem of solving an equation of motion of a two-particle Green function (given by the Bethe-Salpeter equation); this is a consequent extension of MBPT. The ''perturbation'' is again dominated by the electron self-energy operator. This method allows to investigatethe entire linear optical spectrum, both in the frequency range of bound excitons and in the range of resonant states above the fundamental energy gap.
  4. Solution of the time-depending Schroedinger equation.
    By evaluating the time propagation for excited electronic states (either for single quasiparticles or for coupled electron-hole states), the dynamics of charge carriers, resonant charge transfer, etc. is addressed. This step is easilydone within MBPT, just taking the MBPT Hamiltonian as time propagator.
  5. Evaluation of excited-state atom dynamics.
    This step requires the calculation of total energies, of the resulting potential surfaces, and the resulting forces these potentials, thus allowing to solve the atoms' equation of motion by conventional molecular-dynamics techniques.